Question 1:

a) Let L be a language over the alphabet Σ, and define L^{+}to be the language $\mathrm{U}_{k \geq 1} \mathrm{~L}^{k}$. Clearly, from the definition, we have that $\mathrm{L}^{+} \subseteq \mathrm{L}^{*}$. Under which circumstances are they equal? Prove you claim.
b) Five two languages L_{1} and L_{2} over the alphabet $\{\mathrm{a}, \mathrm{b}\}$ such that $\mathrm{L}_{1} \mathrm{~L}_{2}=\mathrm{L}_{2} \mathrm{~L}_{1}$, both are different from $\{\Lambda\}$, and neither language contains the other one.

Question 2:

[4 points]
Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \mathrm{q}_{0}, \mathrm{~A}, \delta\right)$ be a FA with a state $\mathrm{q} \in \mathrm{Q}$ such that that $\delta(\mathrm{q}, \sigma)=\mathrm{q}$ for all $\sigma \in \Sigma$. This means that whatever the input symbol, if M is in state q it will remain there. Use induction to prove that once in q, M will never leave that state anymore whatever the input string it is being fed, i.e. prove that $\delta^{*}(\mathrm{q}, \mathrm{x})=\mathrm{q}$ for all $\mathrm{x} \in \Sigma^{*}$

Question 3:

a) Draw a finite automaton M accepting the language $L=\left\{x \in\{a, b\}^{*} \mid x\right.$ ends with aa or with $\left.b\right\}$.
b) Find three distinct strings x and y and z in $\{a, b\}^{*}$ that are pairwise L distinguishable.
c) Find two distinct strings x and y in $\{a, b\}^{*}$ that are not L distinguishable.
d) Give an automaton recognizing the language $S=\left\{x \in\{a, b\}^{*} \mid x\right.$ ends with $\left.a\right\}$, and using your automaton M , construct an automaton recognizing the language $\mathrm{L} \cap \mathrm{S}$.

