Question 1:

- a) Let L be a language over the alphabet Σ , and define L⁺ to be the language $\bigcup_{k\geq 1} L^k$. Clearly, from the definition, we have that $L^+ \subseteq L^*$. Under which circumstances are they equal? Prove you claim.
- b) Five two languages L_1 and L_2 over the alphabet {a,b} such that $L_1L_2 = L_2L_1$, both are different from { Λ }, and neither language contains the other one.

Question 2:

[4 points]

[2 points]

Let $M = (Q, \Sigma, q_0, A, \delta)$ be a FA with a state $q \in Q$ such that that $\delta(q, \sigma) = q$ for all $\sigma \in \Sigma$. This means that whatever the input symbol, if M is in state q it will remain there. Use induction to prove that once in q, M will never leave that state anymore whatever the input string it is being fed, i.e. prove that $\delta^*(q, x) = q$ for all $x \in \Sigma^*$

Question 3:

[4 points]

- a) Draw a finite automaton M accepting the language $L = \{x \in \{a,b\}^* | x \text{ ends with aa or with } b\}$.
- b) Find three distinct strings x and y and z in $\{a, b\}^*$ that are pairwise L distinguishable.
- c) Find two distinct strings x and y in $\{a, b\}^*$ that are not L distinguishable.
- d) Give an automaton recognizing the language $S = \{x \in \{a,b\}^* | x \text{ ends with } a\}$, and using your automaton M, construct an automaton recognizing the language $L \cap S$.